The Role of Osteoprotegerin in Vascular Calcification and Bone Metabolism: The Basis for Developing New Therapeutics

Affiliation auteurs!!!! Error affiliation !!!!
TitreThe Role of Osteoprotegerin in Vascular Calcification and Bone Metabolism: The Basis for Developing New Therapeutics
Type de publicationJournal Article
Year of Publication2019
AuteursRochette L, Meloux A, Rigal E, Zeller M, Malka G, Cottin Y, Vergely C
JournalCALCIFIED TISSUE INTERNATIONAL
Volume105
Pagination239-251
Date PublishedSEP
Type of ArticleReview
ISSN0171-967X
Mots-clésbone, Calcium, Osteoprotegerin, vascular
Résumé

Osteoporosis (OP) and cardiovascular diseases (CVD) are both important causes of mortality and morbidity in aging patients. There are common mechanisms underlying the regulation of bone remodeling and the development of smooth muscle calcification; a temporal relationship exists between osteoporosis and the imbalance of mineral metabolism in the vessels. Vascular calcification appears regulated by mechanisms that include both inductive and inhibitory processes. Multiple factors are implicated in both bone and vascular metabolism. Among these factors, the superfamily of tumor necrosis factor (TNF) receptors including osteoprotegerin (OPG) and its ligands has been established. OPG is a soluble decoy receptor for receptor activator of nuclear factor-kB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). OPG binds to RANKL and TRAIL, and inhibits the association with their receptors, which have been labeled as the receptor activator of NF-kB (RANK). Sustained release of OPG from vascular endothelial cells (ECs) has been demonstrated in response to inflammatory proteins and cytokines, suggesting that OPG/RANKL/RANK system plays a modulatory role in vascular injury and inflammation. For the development of potential therapeutic strategies targeting vascular calcification, critical consideration of the implications for bone metabolism must be taken into account to prevent potentially detrimental effects to bone metabolism.

DOI10.1007/s00223-019-00573-6