Environmental risk assessment of antibiotics in agroecosystems: ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Environmental risk assessment of antibiotics in agroecosystems: ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum |
Type de publication | Journal Article |
Year of Publication | 2019 |
Auteurs | Martin-Laurent F, Topp E, Billet L, Batisson I, Malandain C, Besse-Hoggan P, Morin S, Artigas J, Bonnineau C, Kergoat L, Devers-Lamrani M, Pesce S |
Journal | ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH |
Volume | 26 |
Pagination | 18930-18937 |
Date Published | JUN |
Type of Article | Article |
ISSN | 0944-1344 |
Mots-clés | antibiotics, Bacteria, biodegradation, Resistance gene |
Résumé | Antibiotics have a wide application range in human and veterinary medicines. Being designed for pharmacological stability, most antibiotics are recalcitrant to biodegradation after ingestion and can be persistent in the environment. Antibiotic residues have been detected as contaminants in various environmental compartments where they cause human and environmental threats, notably with respect to the potential emergence and proliferation of antibiotic-resistant bacteria. An important component of managing environmental risk caused by antibiotics is to understand exposure of soil and water resources to their residues. One challenge is to gain knowledge on the fate of antibiotics in the ecosystem along the soil-water continuum, and on the collateral impact of antibiotics on environmental microorganisms responsible for crucially important ecosystem functions. In this context, the ANTIBIOTOX project aims at studying the environmental fate and impact of two antibiotics of the sulfonamide class of antibiotics, sulfamethazine (SMZ), and sulfamethoxazole (SMX). |
DOI | 10.1007/s11356-019-05122-0 |