Exact Simulation of the First-Passage Time of Diffusions

Affiliation auteurs!!!! Error affiliation !!!!
TitreExact Simulation of the First-Passage Time of Diffusions
Type de publicationJournal Article
Year of Publication2019
AuteursHerrmann S., Zucca C.
JournalJOURNAL OF SCIENTIFIC COMPUTING
Volume79
Pagination1477-1504
Date PublishedJUN
Type of ArticleArticle
ISSN0885-7474
Mots-clésBrownian motion, Diffusion processes, Exact simulation, First-passage time, Girsanov's transformation, Randomized algorithm
Résumé

Since diffusion processes arise in so many different fields, efficient technics for the simulation of sample paths, like discretization schemes, represent crucial tools in applied probability. Such methods permit to obtain approximations of the first-passage times as a by-product. For efficiency reasons, it is particularly challenging to simulate directly this hitting time by avoiding to construct the whole paths. In the Brownian case, the distribution of the first-passage time is explicitly known and can be easily used for simulation purposes. The authors introduce a new rejection sampling algorithm which permits to perform an exact simulation of the first-passage time for general one-dimensional diffusion processes. The efficiency of the method, which is essentially based on Girsanov's transformation, is described through theoretical results and numerical examples.

DOI10.1007/s10915-018-00900-3