A Game Theory Based Efficient Computation Offloading in an UAV Network

Affiliation auteurs!!!! Error affiliation !!!!
TitreA Game Theory Based Efficient Computation Offloading in an UAV Network
Type de publicationJournal Article
Year of Publication2019
AuteursMessous M-A, Senouci S-M, Sedjelmaci H, Cherkaoui S
JournalIEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume68
Pagination4964-4974
Date PublishedMAY
Type of ArticleArticle
ISSN0018-9545
Mots-cléscomputation offloading problem, Mobile Edge Computing, non-cooperative game, pure-strategies, unmanned areal vehicles (UAVs)
Résumé

Recently, solutions based on mobile edge computing paradigm have been widely discussed in academia and industry. This paradigm offers solutions to address limitations, in terms of battery lifetime and processing power, of mobile and constrained devices. Despite the ever-increasing capabilities of these devices, resource requirements of applications can often transcend what is available within a single device. Offloading intensive computation tasks to a distant server can help applications reach their desired performances. In this work, we tackle the problem of offloading heavy computation tasks of unmanned aerial vehicles (UAVs) while achieving the best possible tradeoff between energy consumption, time delay, and computation cost. We focus on a scenario of a fleet of small UAVs performing an exploration mission. During their mission, these constrained devices have to carry-out highly intensive computation tasks such as pattern recognition and video preprocessing. We formulate the problem using a non-cooperative theoretical game with N players and three pure strategies. We provide a comprehensive proof for the existence of a Nash equilibrium and implement accordingly a distributed algorithm that converges to such an equilibrium. Extensive simulations are performed in order to provide thorough results and assess the performances of the approach compared to three other models. Results show that our algorithm outperforms all the three approaches. Our approach achieved in average about 19%, 58%, and 55% better results compared to local computing, offloading to the edge server, and offloading to base station, respectively.

DOI10.1109/TVT.2019.2902318