Pressure drop analysis of oscillating flows through a miniature porous regenerator under isothermal and nonisothermal conditions

Affiliation auteurs!!!! Error affiliation !!!!
TitrePressure drop analysis of oscillating flows through a miniature porous regenerator under isothermal and nonisothermal conditions
Type de publicationJournal Article
Year of Publication2019
AuteursDellali E., Begot S., Lanzetta F., Gavignet E., Rauch J.Y
JournalEXPERIMENTAL THERMAL AND FLUID SCIENCE
Volume103
Pagination394-405
Date PublishedMAY
Type of ArticleArticle
ISSN0894-1777
Mots-clésFriction factor, Millimetric size, Pressure drop, Reciprocating flow, Regenerator, Stirling engine
Résumé

In this paper, we present an experimental study on the pressure, pressure drop, velocity and friction factor in a regenerator made from an array of pillars in reciprocating flow conditions. The fluid used in the experiment is air. We show that the pressure drop depends on the porosity, frequency and stroke. We observe a phase shift between the crank angle sinusoidal variation of the piston and the pressure variation that increases with frequency. We also observe that the instantaneous friction factor is higher in the discharge phase than in the suction phase, and higher in the acceleration than in the deceleration phase. Friction factor in oscillating flow appears to be higher than friction factor in steady unidirectional flow for the highest porosity. For the lower porosities, we observe that the pressure drop and friction factors are similar for maximum Reynolds numbers lower than 5000. An experimental correlation for the friction factor of the regenerator is derived in order to design a millimetric Stirling engine. The friction factor is compared with friction factors reported for woven screens, metal felts and involute foil regenerators.

DOI10.1016/j.expthermflusci.2019.01.027