Modeling of a hybrid marine current-hydrogen active power generation system

Affiliation auteurs!!!! Error affiliation !!!!
TitreModeling of a hybrid marine current-hydrogen active power generation system
Type de publicationJournal Article
Year of Publication2019
AuteursBarakat M, Tala-Ighil B., Gualous H., Hissel D.
JournalINTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume44
Pagination9621-9635
Date PublishedAPR 12
Type of ArticleArticle
ISSN0360-3199
Mots-clésActive hydrogen power generation system, Marine current turbine, Maximum power point tracking, Proton Exchange Membrane Electrolyzer
Résumé

This paper presents the modeling and the simulation of a hybrid marine current-hydrogen power generation system. The marine current power generation system consists of a fixed pitch marine current turbine directly coupled to a permanent magnet synchronous generator (PMSG). The generator is connected to a DC link capacitor via a controlled rectifier, which has two modes of operation. The first mode is the maximum power point tracking (MPPT) by using torque control when the generator runs below the rated speed. The second mode is the power limitation (at the rated value) when the generator runs above the nominal speed. The generated power is transferred from the DC-link to the load via an inverter to run the system in a stand-alone operation mode. An energy storage system must cover the difference between the generation and the consumption for this scheme. The hydrogen, compared with the different energy storage systems, exhibits characteristics more applicable for marine current power generation systems. When the generated power is higher than the load requirements, a Megawatt-scale proton exchange membrane (PEM) electrolyzer consumes the surplus energy for hydrogen generation. The generated hydrogen is stored in tanks to feed a PEM fuel cell system to generate power in case of shortage. Based on this topology and operation procedure, the overall system is called an active power generation system. The MW scale PEM electrolyzer model is presented based on state of the art and the literature of different scales PEM electrolyzer system modeling. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

DOI10.1016/j.ijhydene.2018.10.020