CENTRAL INVARIANTS REVISITED
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | CENTRAL INVARIANTS REVISITED |
Type de publication | Journal Article |
Year of Publication | 2018 |
Auteurs | Carlet G, Kramer R, Shadrin S |
Journal | JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES |
Volume | 5 |
Pagination | 149-175 |
Type of Article | Article |
ISSN | 2429-7100 |
Mots-clés | bi-Hamiltonian cohomology, central invariants, deformations of bi-Hamiltonian structures, Poisson structures of hydrodynamic type |
Résumé | We use refined spectral sequence arguments to calculate known and previously unknown bi-Hamiltonian cohomology groups, which govern the deformation theory of semi-simple bi-Hamiltonian pencils of hydrodynamic type with one independent and N dependent variables. In particular, we rederive the result of Dubrovin-Liu-Zhang that these deformations are parametrized by the so-called central invariants, which are N smooth functions of one variable. |
DOI | 10.5802/jep.66 |