Railway Point Machine Prognostics Based on Feature Fusion and Health State Assessment
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Railway Point Machine Prognostics Based on Feature Fusion and Health State Assessment |
Type de publication | Journal Article |
Year of Publication | 2019 |
Auteurs | Atamuradov V, Medjaher K, Camci F, Dersin P, Zerhouni N |
Journal | IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT |
Volume | 68 |
Pagination | 2691-2704 |
Date Published | AUG |
Type of Article | Article |
ISSN | 0018-9456 |
Mots-clés | Adaptive feature fusion, feature selection and evaluation, health state division, point machine sliding-chairs, Prognostics, segmentation, single spectral analysis, support vector machine (SVM) |
Résumé | This paper presents a condition monitoring approach for point machine prognostics to increase the reliability, availability, and safety in railway transportation industry. The proposed approach is composed of three steps: 1) health indicator (HI) construction by data fusion, 2) health state assessment, and 3) failure prognostics. In Step 1, the time-domain features are extracted and evaluated by hybrid and consistency feature evaluation metrics to select the best class of prognostics features. Then, the selected feature class is combined with the adaptive feature fusion algorithm to build a generic point machine HI. In Step 2, health state division is accomplished by time-series segmentation algorithm using the fused HI. Then, fault detection is performed by using a support vector machine classifier. Once the faulty state has been classified (i.e., incipient/starting fault), the single spectral analysis recurrent forecasting is triggered to estimate the component remaining useful life. The proposed methodology is validated on in-field point machine sliding-chair degradation data. The results show that the approach can be effectively used in railway point machine monitoring. |
DOI | 10.1109/TIM.2018.2869193 |