Report on three additional patients and genotype-phenotype correlation in SLC25A22-related disorders group

Affiliation auteurs!!!! Error affiliation !!!!
TitreReport on three additional patients and genotype-phenotype correlation in SLC25A22-related disorders group
Type de publicationJournal Article
Year of Publication2019
AuteursLemattre C, Imbert-Bouteille M, Gatinois V, Benit P, Sanchez E, Guignard T, Mau-Them FTran, Haquet E, Rivier F, Carme E, Roubertie A, Boland A, Lechner D, Meyer V, Thevenon J, Duffourd Y, Riviere J-B, Deleuze J-F, Wells C, Molinari F, Rustin P, Blanchet P, Genevieve D
JournalEUROPEAN JOURNAL OF HUMAN GENETICS
Volume27
Pagination1692-1700
Date PublishedNOV
Type of ArticleArticle
ISSN1018-4813
Résumé

Early infantile epileptic encephalopathy (EIEE) is a heterogeneous group of severe forms of age-related developmental and epileptic encephalopathies with onset during the first weeks or months of life. The interictal electroencephalogram (EEG) shows a ``suppression burst'' (SB) pattern. The prognosis is usually poor and most children die within the first two years or survive with very severe intellectual disabilities. EIEE type 3 is caused by variants affecting function, in SLC25A22, which is also responsible for epilepsy of infancy with migrating focal seizures (EIMFS). We report a family with a less severe phenotype of EIEE type 3. We performed exome sequencing and identified two unreported variants in SLC25A22 in the compound heterozygous state: NM_024698 .4: c. [813_814delTG] ; [818 G>A] (p. [Ala272G1nfs *144]; [Arg273Lys]). Functional studies in cultured skin fibroblasts from a patient showed that glutamate oxidation was strongly defective, based on a literature review. We clustered the 18 published patients (including those from this family) into three groups according to the severity of the SLC25A22-related disorders. In an attempt to identify genotype-phenotype correlations, we compared the variants according to the location depending on the protein domains. We observed that patients with two variants located in helical transmembrane domains presented a severe phenotype, whereas patients with at least one variant outside helical transmembrane domains presented a milder phenotype. These data are suggestive of a continuum of disorders related to SLC25A22 that could be called SLC25A22-related disorders. This might be a first clue to enable geneticists to outline a prognosis based on genetic molecular data regarding the SLC25A22 gene.

DOI10.1038/s41431-019-0433-2