Rational invariant tori and band edge spectra for non-selfadjoint operators
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Rational invariant tori and band edge spectra for non-selfadjoint operators |
Type de publication | Journal Article |
Year of Publication | 2018 |
Auteurs | Hitrik M, Sjostrand J |
Journal | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY |
Volume | 20 |
Pagination | 391-457 |
Type of Article | Article |
ISSN | 1435-9855 |
Mots-clés | completely integrable, eigenvalue, exponential weight, FBI transform, Lagrangian torus, Non-selfadjoint, pseudospectrum, rational torus, resolvent, secular perturbation theory, Semiclassical limit, spectral asymptotics |
Résumé | We study semiclassical asymptotics for spectra of non-selfadjoint perturbations of selfadjoint analytic h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Complete asymptotic expansions are established for all individual eigenvalues in suitable regions of the complex spectral plane, near the edges of the spectral band, coming from rational flow-invariant Lagrangian tori. |
DOI | 10.4171/JEMS/770 |