Rational invariant tori and band edge spectra for non-selfadjoint operators

Affiliation auteurs!!!! Error affiliation !!!!
TitreRational invariant tori and band edge spectra for non-selfadjoint operators
Type de publicationJournal Article
Year of Publication2018
AuteursHitrik M, Sjostrand J
JournalJOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY
Volume20
Pagination391-457
Type of ArticleArticle
ISSN1435-9855
Mots-cléscompletely integrable, eigenvalue, exponential weight, FBI transform, Lagrangian torus, Non-selfadjoint, pseudospectrum, rational torus, resolvent, secular perturbation theory, Semiclassical limit, spectral asymptotics
Résumé

We study semiclassical asymptotics for spectra of non-selfadjoint perturbations of selfadjoint analytic h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Complete asymptotic expansions are established for all individual eigenvalues in suitable regions of the complex spectral plane, near the edges of the spectral band, coming from rational flow-invariant Lagrangian tori.

DOI10.4171/JEMS/770