Higher-derivative harmonic oscillators: stability of classical dynamics and adiabatic invariants

Affiliation auteurs!!!! Error affiliation !!!!
TitreHigher-derivative harmonic oscillators: stability of classical dynamics and adiabatic invariants
Type de publicationJournal Article
Year of Publication2019
AuteursBoulanger N, Buisseret F, Dierick F, White O
JournalEUROPEAN PHYSICAL JOURNAL C
Volume79
Pagination60
Date PublishedJAN 28
Type of ArticleArticle
ISSN1434-6044
Résumé

The status of classical stability in higher-derivative systems is still subject to discussions. In this note, we argue that, contrary to general belief, many higher-derivative systems are classically stable. The main tool to see this property are Nekhoroshev's estimates relying on the action-angle formulation of classical mechanics. The latter formulation can be reached provided the Hamiltonian is separable, which is the case for higher-derivative harmonic oscillators. The Pais-Uhlenbeck oscillators appear to be the only type of higher-derivative harmonic oscillator with stable classical dynamics. A wide class of interaction potentials can even be added that preserve classical stability. Adiabatic invariants are built in the case of a Pais-Uhlenbeck oscillator slowly changing in time; it is shown indeed that the dynamical stability is not jeopardised by the time-dependent perturbation.

DOI10.1140/epjc/s10052-019-6569-y