An averaged projected Robbins-Monro algorithm for estimating the parameters of a truncated spherical distribution

Affiliation auteursAffiliation ok
TitreAn averaged projected Robbins-Monro algorithm for estimating the parameters of a truncated spherical distribution
Type de publicationJournal Article
Year of Publication2017
AuteursGodichon-Baggioni A, Portier B
JournalELECTRONIC JOURNAL OF STATISTICS
Volume11
Pagination1890-1927
Type of ArticleArticle
ISSN1935-7524
Mots-clésasymptotic properties, Averaging, Projected Robbins-Monro algorithm, sphere fitting
Résumé

The objective of this work is to propose a new algorithm to fit a sphere on a noisy 3D point cloud distributed around a complete or a truncated sphere. More precisely, we introduce a projected Robbins-Monro algorithm and its averaged version for estimating the center and the radius of the sphere. We give asymptotic results such as the almost sure convergence of these algorithms as well as the asymptotic normality of the averaged algorithm. Furthermore, some non-asymptotic results will be given, such as the rates of convergence in quadratic mean. Some numerical experiments show the efficiency of the proposed algorithm on simulated data for small to moderate sample sizes and for modeling an object in 3D.

DOI10.1214/17-EJS1276