Improved photodynamic effect through encapsulation of two photosensitizers in lipid nanocapsules

Affiliation auteurs!!!! Error affiliation !!!!
TitreImproved photodynamic effect through encapsulation of two photosensitizers in lipid nanocapsules
Type de publicationJournal Article
Year of Publication2018
AuteursBarras A, Skandrani N, Pisfil MGonzalez, Paryzhak S, Dumych T, Haustrate A, Heliot L, Gharbi T, Boulahdour H, Lehen'kyi V'yacheslav, Bilyy R, Szunerits S, Bidaux G, Boukherroub R
JournalJOURNAL OF MATERIALS CHEMISTRY B
Volume6
Pagination5949-5963
Date PublishedOCT 7
Type of ArticleArticle
ISSN2050-750X
Résumé

Photodynamic therapy (PDT) has developed into a new clinical and non-invasive treatment for cancer over the past 30 years. By the combination of three non-toxic partners, i.e. a photosensitizer (PS), molecular oxygen (O-2) and light, cytotoxic reactive oxygen species (ROS) are locally produced leading to irreversible vascular and cellular damage. In the present study, we report for the first time that the combination of two photosensitizers (2 PSs: Protoporphyrin IX, PpIX and Hypericin, Hy) loaded in the same lipid nanocapsules (LNCs) leads to enhanced photodynamic therapy efficiency when compared with previously reported systems. The 2 PS-loaded LNCs are shown to increase the in vitro phototoxicity at the nanomolar range (IC50 = 274 and 278 nM on HeLa and MDA-MB-231 cell lines, respectively), whereas the corresponding single PS-loaded LNCs at the same concentration exhibit a phototoxicity two times lower. Intracellular localization in HeLa cells indicates a subcellular asymmetry of PpIX and Hy, in the plasma, ER membranes and round internal structures. The biodistribution of LNCs was studied upon different routes of injection into Swiss nude mice; based on the obtained data, LNCs were injected intratumorally and used to slow the growth of xenograft tumors in mice. The results obtained in this study suggest that the combination of two or more PSs may be a promising strategy to improve the efficacy of conventional photodynamic therapy as well as to reduce dark toxicity.

DOI10.1039/c8tb01759j