Arterial tortuosity syndrome: 40 new families and literature review

Affiliation auteurs!!!! Error affiliation !!!!
TitreArterial tortuosity syndrome: 40 new families and literature review
Type de publicationJournal Article
Year of Publication2018
AuteursBeyens A, Albuisson J, Boel A, Al-Essa M, Al-Manea W, Bonnet D, Bostan O, Boute O, Busa T, Canham N, Cil E, Coucke PJ, Cousin MA, Dasouki M, De Backer J, De Paepe A, De Schepper S, De Silva D, Devriendt K, De Wandele I, Deyle DR, Dietz H, Dupuis-Girod S, Fontenot E, Fischer-Zirnsak B, Gezdirici A, Ghoumid J, Giuliano F, Diez NBaena, Haider MZ, Hardin JS, Jeunemaitre X, Klee EW, Kornak U, Landecho MF, Legrand A, Loeys B, Lyonnet S, Michael H, Moceri P, Mohammed S, Muino-Mosquera L, Nampoothiri S, Pichler K, Prescott K, Rajeb A, Ramos-Arroyo M, Rossi M, Salih M, Seidahmed MZ, Schaefer E, Steichen-Gersdorf E, Temel S, Uysal F, Vanhomwegen M, Van Laer L, Van Maldergem L, Warner D, Willaert A, , Taylor A, Davis EC, Zarate Y, Callewaert B
JournalGENETICS IN MEDICINE
Volume20
Pagination1236-1245
Date PublishedOCT
Type of ArticleReview
ISSN1098-3600
Mots-clésaneurysm, arterial tortuosity syndrome, electron microscopy, GLUT10, SLC2A10
Résumé

Purpose: We delineate the clinical spectrum and describe the histology in arterial tortuosity syndrome (ATS), a rare connective tissue disorder characterized by tortuosity of the large and medium-sized arteries, caused by mutations in SLC2A10. Methods: We retrospectively characterized 40 novel ATS families (50 patients) and reviewed the 52 previously reported patients. We performed histology and electron microscopy (EM) on skin and vascular biopsies and evaluated TGF-beta signaling with immunohistochemistry for pSMAD2 and CTGF. Results: Stenoses, tortuosity, and aneurysm formation are widespread occurrences. Severe but rare vascular complications include early and aggressive aortic root aneurysms, neonatal intracranial bleeding, ischemic stroke, and gastric perforation. Thus far, no reports unequivocally document vascular dissections or ruptures. Of note, diaphragmatic hernia and infant respiratory distress syndrome (IRDS) are frequently observed. Skin and vascular biopsies show fragmented elastic fibers (EF) and increased collagen deposition. EM of skin EF shows a fragmented elastin core and a peripheral mantle of microfibrils of random directionality. Skin and end-stage diseased vascular tissue do not indicate increased TGF-beta signaling. Conclusion: Our findings warrant attention for IRDS and diaphragmatic hernia, close monitoring of the aortic root early in life, and extensive vascular imaging afterwards. EM on skin biopsies shows disease-specific abnormalities.

DOI10.1038/gim.2017.253