(k, l)-Clustering for Transactional Data Streams Anonymization

Affiliation auteurs!!!! Error affiliation !!!!
Titre(k, l)-Clustering for Transactional Data Streams Anonymization
Type de publicationConference Paper
Year of Publication2018
AuteursTekli J, Bouna BAl, Issa YBou, Kamradt M, Haraty R
EditorSu C, Kikuchi H
Conference NameINFORMATION SECURITY PRACTICE AND EXPERIENCE (ISPEC 2018)
PublisherHitachi Ltd; Mitsubishi Elect Corp; TOSHIBA Corp; Huawei Technologies Co Ltd; ANDISEC Ltd
Conference LocationGEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
ISBN Number978-3-319-99807-7; 978-3-319-99806-0
Mots-clésAnonymization, Correlation, data privacy, Data stream
Résumé

In this paper, we address the correlation problem in the anonymization of transactional data streams. We propose a bucketization-based technique, entitled (k, l)-clustering to prevent such privacy breaches by ensuring that the same k individuals remain grouped together over the entire anonymized stream. We evaluate our algorithm in terms of utility by considering two different (k, l)-clustering approaches.

DOI10.1007/978-3-319-99807-7_35