(k, l)-Clustering for Transactional Data Streams Anonymization
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | (k, l)-Clustering for Transactional Data Streams Anonymization |
Type de publication | Conference Paper |
Year of Publication | 2018 |
Auteurs | Tekli J, Bouna BAl, Issa YBou, Kamradt M, Haraty R |
Editor | Su C, Kikuchi H |
Conference Name | INFORMATION SECURITY PRACTICE AND EXPERIENCE (ISPEC 2018) |
Publisher | Hitachi Ltd; Mitsubishi Elect Corp; TOSHIBA Corp; Huawei Technologies Co Ltd; ANDISEC Ltd |
Conference Location | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
ISBN Number | 978-3-319-99807-7; 978-3-319-99806-0 |
Mots-clés | Anonymization, Correlation, data privacy, Data stream |
Résumé | In this paper, we address the correlation problem in the anonymization of transactional data streams. We propose a bucketization-based technique, entitled (k, l)-clustering to prevent such privacy breaches by ensuring that the same k individuals remain grouped together over the entire anonymized stream. We evaluate our algorithm in terms of utility by considering two different (k, l)-clustering approaches. |
DOI | 10.1007/978-3-319-99807-7_35 |