MRI-Based Radiomics Input for Prediction of 2-Year Disease Recurrence in Anal Squamous Cell Carcinoma
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | MRI-Based Radiomics Input for Prediction of 2-Year Disease Recurrence in Anal Squamous Cell Carcinoma |
Type de publication | Journal Article |
Year of Publication | 2021 |
Auteurs | Giraud N, Saut O, Aparicio T, Ronchin P, Bazire L-A, Barbier E, Lemanski C, Mirabel X, Etienne P-L, Lievre A, Cacheux W, Darut-Jouve A, de la Fouchardiere C, Hocquelet A, Trillaud H, Charleux T, Breysacher G, Argo-Leignel D, Tessier A, Magne N, Ben Abdelghani M, Lepage C, Vendrely V |
Journal | CANCERS |
Volume | 13 |
Pagination | 193 |
Date Published | JAN |
Type of Article | Article |
Mots-clés | Anal cancer, Machine learning, magnetic resonance imaging, precision medicine, prediction medicine, radiomics |
Résumé | {Simple Summary Exclusive chemo-radiotherapy (CRT) is the standard treatment for non-metastatic anal squamous cell carcinomas. Identifying novel prognostic factors could help to improve CRT outcomes, notably for locally advanced diseases where relapses still occur in around 35% of patients. In this study, we aim to assess the potential value of a pre-therapeutic MRI radiomic analysis added to standard clinical variables in order to build a logistic regression model predicting 2-year recurrence after CRT. In a population of 82 patients randomly divided in training (n = 54) and testing (n = 28) sets, after selection of optimal variables, a model using two radiomic (FirstOrder_Entropy and GLCM_JointEnergy) and two clinical (tumor size and CRT length) features was able to predict the 2-year recurrence with good performances in the testing set. Radiomic biomarkers provided valuable additional and independent information added to clinical data, and could help contribute to identify high risk patients amenable to treatment intensification with view of personalized medicine. Purpose: Chemo-radiotherapy (CRT) is the standard treatment for non-metastatic anal squamous cell carcinomas (ASCC). Despite excellent results for T1-2 stages, relapses still occur in around 35% of locally advanced tumors. Recent strategies focus on treatment intensification, but could benefit from a better patient selection. Our goal was to assess the prognostic value of pre-therapeutic MRI radiomics on 2-year disease control (DC). Methods: We retrospectively selected patients with non-metastatic ASCC treated at the CHU Bordeaux and in the French FFCD0904 multicentric trial. Radiomic features were extracted from T2-weighted pre-therapeutic MRI delineated sequences. After random division between training and testing sets on a 2:1 ratio, univariate and multivariate analysis were performed on the training cohort to select optimal features. The correlation with 2-year DC was assessed using logistic regression models, with AUC and accuracy as performance gauges, and the prediction of disease-free survival using Cox regression and Kaplan-Meier analysis. Results: A total of 82 patients were randomized in the training (n = 54) and testing sets (n = 28). At 2 years, 24 patients (29%) presented relapse. In the training set, two clinical (tumor size and CRT length) and two radiomic features (FirstOrder_Entropy and GLCM_JointEnergy) were associated with disease control in univariate analysis and included in the model. The clinical model was outperformed by the mixed (clinical and radiomic) model in both the training (AUC 0.758 versus 0.825, accuracy of 75.9% versus 87%) and testing (AUC 0.714 versus 0.898, accuracy of 78.6% versus 85.7%) sets, which led to distinctive high and low risk of disease relapse groups (HR 8.60 |
DOI | 10.3390/cancers13020193 |