Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans

Affiliation auteurs!!!! Error affiliation !!!!
TitreDisruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans
Type de publicationJournal Article
Year of Publication2017
AuteursLu H-C, Tan Q, Rousseaux MWC, Wang W, Kim J-Y, Richman R, Wan Y-W, Yeh S-Y, Patel JM, Liu X, Lin T, Lee Y, Fryer JD, Han J, Chahrour M, Finnell RH, Lei Y, Zurita-Jimenez ME, Ahimaz P, Anyane-Yeboa K, Van Maldergem L, Lehalle D, Jean-Marcais N, Mosca-Boidron A-L, Thevenon J, Cousin MA, Bro DE, Lanpher BC, Klee EW, Alexander N, Bainbridge MN, Orr HT, Sillitoe RV, M. Ljungberg C, Liu Z, Schaaf CP, Zoghbi HY
JournalNATURE GENETICS
Volume49
Pagination527+
Date PublishedAPR
Type of ArticleArticle
ISSN1061-4036
Résumé

Gain-of-function mutations in some genes underlie neurodegenerative conditions, whereas loss-of-function mutations in the same genes have distinct phenotypes. This appears to be the case with the protein ataxin 1 (ATXN1), which forms a transcriptional repressor complex with capicua (CIC). Gain of function of the complex leads to neurodegeneration, but ATXN1-CIC is also essential for survival. We set out to understand the functions of the ATXN1-CIC complex in the developing forebrain and found that losing this complex results in hyperactivity, impaired learning and memory, and abnormal maturation and maintenance of upper-layer cortical neurons. We also found that CIC activity in the hypothalamus and medial amygdala modulates social interactions. Informed by these neurobehavioral features in mouse mutants, we identified five individuals with de novo heterozygous truncating mutations in CIC who share similar clinical features, including intellectual disability, attention deficit/hyperactivity disorder (ADHD), and autism spectrum disorder. Our study demonstrates that loss of ATXN1-CIC complexes causes a spectrum of neurobehavioral phenotypes.

DOI10.1038/ng.3808