An Accurate and Easy to Interpret Binary Classifier Based on Association Rules Using Implication Intensity and Majority Vote
Affiliation auteurs | Affiliation ok |
Titre | An Accurate and Easy to Interpret Binary Classifier Based on Association Rules Using Implication Intensity and Majority Vote |
Type de publication | Journal Article |
Year of Publication | 2021 |
Auteurs | Ghanem S, Couturier R, Gregori P |
Journal | MATHEMATICS |
Volume | 9 |
Pagination | 1315 |
Date Published | JUN |
Type of Article | Article |
Mots-clés | Association Rules, Classification, open access datasets, Statistical Implicative Analysis |
Résumé | In supervised learning, classifiers range from simpler, more interpretable and generally less accurate ones (e.g., CART, C4.5, J48) to more complex, less interpretable and more accurate ones (e.g., neural networks, SVM). In this tradeoff between interpretability and accuracy, we propose a new classifier based on association rules, that is to say, both easy to interpret and leading to relevant accuracy. To illustrate this proposal, its performance is compared to other widely used methods on six open access datasets. |
DOI | 10.3390/math9121315 |