Computation Offloading Game for an UAV Network in Mobile Edge Computing
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Computation Offloading Game for an UAV Network in Mobile Edge Computing |
Type de publication | Conference Paper |
Year of Publication | 2017 |
Auteurs | Messous M-A, Sedjelmaci H, Houari N, Senouci S-M |
Conference Name | 2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC) |
Publisher | IEEE; IEEE France Sect; IEEE Commun Soc |
Conference Location | 345 E 47TH ST, NEW YORK, NY 10017 USA |
ISBN Number | 978-1-4673-8999-0 |
Mots-clés | Computation Offloading, game theory, Mobile Edge Computing, UAV (Unmanned Areal Vehicles) |
Résumé | Due to the limitations of mobile devices in terms of processing power and battery lifetime, cloud based solutions offer an attractive approach to answer these shortcomings. Since offloading intensive computation tasks to an edge/cloud server would achieve impressive performances, computation offloading paradigm has attracted the focus of many research groups in the last few years. This paper considers the problem of computation offloading while achieving a tradeoff between execution time and energy consumption. The proposed solution is intended for a fleet of small drones that are required to achieve highly intensive computation tasks. Drones need to detect, identify and classify objects or situations. Thus, they are brought to deal with intensive tasks such as pattern recognition and video preprocessing. The latter implement very complex calculations and typically require dedicated and powerful processors, which would definitely accentuate the dilemma between energy and delay. We adopted a game theory model where the players are all the drones in the network with three possible strategies. We defined the cost function to be minimized as a combination of energy overhead and delay. The simulation results are very promising and the achieved performances outperformed their counterparts in terms of average system wide cost and scalability. |