Unitary matrix models and random partitions: Universality and multi-criticality

Affiliation auteurs!!!! Error affiliation !!!!
TitreUnitary matrix models and random partitions: Universality and multi-criticality
Type de publicationJournal Article
Year of Publication2021
AuteursKimura T, Zahabi A
JournalJOURNAL OF HIGH ENERGY PHYSICS
Pagination100
Date PublishedJUL 15
Type of ArticleArticle
ISSN1029-8479
Mots-clés1, integrable hierarchies, Matrix Models, N Expansion, supersymmetric gauge theory
Résumé

The generating functions for the gauge theory observables are often represented in terms of the unitary matrix integrals. In this work, the perturbative and non-perturbative aspects of the generic multi-critical unitary matrix models are studied by adopting the integrable operator formalism, and the multi-critical generalization of the Tracy-Widom distribution in the context of random partitions. We obtain the universal results for the multi-critical model in the weak and strong coupling phases. The free energy of the instanton sector in the weak coupling regime, and the genus expansion of the free energy in the strong coupling regime are explicitly computed and the universal multi-critical phase structure of the model is explored. Finally, we apply our results in concrete examples of supersymmetric indices of gauge theories in the large N limit.

DOI10.1007/JHEP07(2021)100