Remote Photoplethysmography Based on Implicit Living Skin Tissue Segmentation
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Remote Photoplethysmography Based on Implicit Living Skin Tissue Segmentation |
Type de publication | Conference Paper |
Year of Publication | 2016 |
Auteurs | Bobbia S, Benezeth Y, Dubois J |
Conference Name | 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) |
Publisher | Int Assoc Pattern Recognit; Int Conf Pattern Recognit, Org Comm; Elsevier; IBM Res; INTEL; CONACYT |
Conference Location | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
ISBN Number | 978-1-5090-4847-2 |
Résumé | Region of interest selection is an essential part for remote photoplethysmography (rPPG) algorithms. Most of the time, face detection provided by a supervised learning of physical appearance features coupled with skin detection is used for region of interest selection. However, both methods have several limitations and we propose to implicitly select living skin tissue via their particular pulsatility feature. The input video stream is decomposed into several temporal superpixels from which pulse signals are extracted. Pulsatility measure for each temporal superpixel is then used to merge pulse traces and estimate the photoplethysmogram signal. This allows to select skin tissue and furthermore to favor areas where the pulse trace is more predominant. Experimental results showed that our method perform better than state of the art algorithms without any critical face or skin detection. |