A note on the restricted universal enveloping algebra of a restricted Lie-Rinehart Algebra

Affiliation auteursAffiliation ok
TitreA note on the restricted universal enveloping algebra of a restricted Lie-Rinehart Algebra
Type de publicationJournal Article
Year of Publication2016
AuteursSchauenburg P
JournalBULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN
Volume23
Pagination769-777
Type of ArticleArticle; Proceedings Paper
ISSN1370-1444
Résumé

Lie-Rinehart algebras, also known as Lie algebroids, give rise to Hopf algebroids by a universal enveloping algebra construction, much as the universal enveloping algebra of an ordinary Lie algebra gives a Hopf algebra, of infinite dimension. In finite characteristic, the universal enveloping algebra of a restricted Lie algebra admits a quotient Hopf algebra which is finite-dimensional if the Lie algebra is. Rumynin has shown that suitably defined restricted Lie algebroids allow to define restricted universal enveloping algebras that are finitely generated projective if the Lie algebroid is. This note presents an alternative proof and possibly fills a gap that might, however, only be a gap in the author's understanding.

DOI10.36045/bbms/1483671625