Coordinated scheduling of a gas/electricity/heat supply network considering temporal-spatial electric vehicle demands
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Coordinated scheduling of a gas/electricity/heat supply network considering temporal-spatial electric vehicle demands |
Type de publication | Journal Article |
Year of Publication | 2018 |
Auteurs | Li B, Roche R, Paire D, Miraoui A |
Journal | ELECTRIC POWER SYSTEMS RESEARCH |
Volume | 163 |
Pagination | 382-395 |
Date Published | OCT |
Type of Article | Article |
ISSN | 0378-7796 |
Mots-clés | Electric vehicle, Gas/electricity/heat, Hydrogen storage system, microgrid, Optimization, scheduling |
Résumé | Renewable energy-based multi-energy supply microgrids are expected to play an important role in smart cities. How to schedule such microgrids in grid-connected mode and dispatch power among sources inside the microgrids is a problem. Moreover, as electric vehicles are becoming more and more common, the charging of large numbers of vehicles is also a challenge for the utility grid. In this paper, we build a temporal-spatial electric vehicle charging demand model, which includes three parts: trip plans, duration of stay, and search for the shortest path based on the Dijkstra algorithm. Then, we build a grid-connected gas/electricity/heat microgrid and present a coordinated scheduling method for this microgrid. A day-ahead scheduling method is used to decide the role of the microgrid (i.e., operate as a load or as a generator from the point of view of the utility), a real-time rolling-horizon dispatching algorithm is used to respond to the forecasting errors and at the same time implement the real-time actual power exchange between the microgrid and the main grid. The problem is formulated as a mixed integer linear programming problem. The temporal-spatial electric vehicle charging demands model is simulated based on a 81-node transportation network, while the energy supply network is a combined IEEE-30, gas-20 and heat-14 network. The simulation results show the effectiveness of this coordinated scheduling method. |
DOI | 10.1016/j.epsr.2018.07.014 |