Quadratic hedging schemes for non-Gaussian GARCH models
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Quadratic hedging schemes for non-Gaussian GARCH models |
Type de publication | Journal Article |
Year of Publication | 2014 |
Auteurs | Badescu A, Elliott RJ, Ortega J-P |
Journal | JOURNAL OF ECONOMIC DYNAMICS & CONTROL |
Volume | 42 |
Pagination | 13-32 |
Date Published | MAY |
Type of Article | Article |
ISSN | 0165-1889 |
Mots-clés | Bivariate diffusion limit, GARCH models, Local risk minimization, Martingale measure, Minimum variance hedge |
Résumé | We propose different schemes for option hedging when asset returns are modeled using a general class of GARCH models. More specifically, we implement local risk minimization and a minimum variance hedge approximation based on an extended Girsanov principle that generalizes Duan's (1995) delta hedge. Since the minimal martingale measure fails to produce a probability measure in this setting, we construct local risk minimization hedging strategies with respect to a pricing kernel. These approaches are investigated in the context of non-Gaussian driven models. Furthermore, we analyze these methods for non-Gaussian GARCH diffusion limit processes and link them to the corresponding discrete time counterparts. A detailed numerical analysis based on S&P 500 European call options is provided to assess the empirical performance of the proposed schemes. We also test the sensitivity of the hedging strategies with respect to the risk neutral measure used by recomputing some of our results with an exponential affine pricing kernel. (C) 2014 Elsevier B.V. All rights reserved. |
DOI | 10.1016/j.jedc.2014.03.001 |