P2D: a self-supervised method for depth estimation from polarimetry

Affiliation auteurs!!!! Error affiliation !!!!
TitreP2D: a self-supervised method for depth estimation from polarimetry
Type de publicationConference Paper
Year of Publication2021
AuteursBlanchon M, Sidibe D, Morel O, Seulin R, Braun D, Meriaudeau F
Conference Name2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR)
PublisherInt Assoc Pattern Recognit; IEEE Comp Soc; Italian Assoc Comp Vis Pattern Recognit & Machine Learning
Conference Location10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
ISBN Number978-1-7281-8808-9
Résumé

Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we include a term of polarimetric regularization to slate-of-the-art method to take specific advantage of the data. Our method is evaluated both qualitatively and quantitatively demonstrating that the contribution of this new information as well as an enhanced loss function improves depth estimation results, especially for specular areas.

DOI10.1109/ICPR48806.2021.9412441