Random Walks on Finite Quantum Groups
Affiliation auteurs | Affiliation ok |
Titre | Random Walks on Finite Quantum Groups |
Type de publication | Journal Article |
Year of Publication | 2020 |
Auteurs | Baraquin I |
Journal | JOURNAL OF THEORETICAL PROBABILITY |
Volume | 33 |
Pagination | 1715-1736 |
Date Published | SEP |
Type of Article | Article |
ISSN | 0894-9840 |
Mots-clés | Central idempotent state, Convergence of random walks, Finite quantum group, representation theory, Sekine quantum groups |
Résumé | In this paper, we study convergence of random walks, on finite quantum groups, arising from linear combination of irreducible characters. We bound the distance to the Haar state and determine the asymptotic behavior, i.e., the limit state if it exists. We note that the possible limits are any central idempotent state. We also look at cutoff phenomenon in the Sekine finite quantum groups. |
DOI | 10.1007/s10959-019-00916-x |