Random Walks on Finite Quantum Groups

Affiliation auteursAffiliation ok
TitreRandom Walks on Finite Quantum Groups
Type de publicationJournal Article
Year of Publication2020
AuteursBaraquin I
JournalJOURNAL OF THEORETICAL PROBABILITY
Volume33
Pagination1715-1736
Date PublishedSEP
Type of ArticleArticle
ISSN0894-9840
Mots-clésCentral idempotent state, Convergence of random walks, Finite quantum group, representation theory, Sekine quantum groups
Résumé

In this paper, we study convergence of random walks, on finite quantum groups, arising from linear combination of irreducible characters. We bound the distance to the Haar state and determine the asymptotic behavior, i.e., the limit state if it exists. We note that the possible limits are any central idempotent state. We also look at cutoff phenomenon in the Sekine finite quantum groups.

DOI10.1007/s10959-019-00916-x