FINITE LARMOR RADIUS APPROXIMATION FOR COLLISIONAL MAGNETIC CONFINEMENT. PART II: THE FOKKER-PLANCK-LANDAU EQUATION

Affiliation auteursAffiliation ok
TitreFINITE LARMOR RADIUS APPROXIMATION FOR COLLISIONAL MAGNETIC CONFINEMENT. PART II: THE FOKKER-PLANCK-LANDAU EQUATION
Type de publicationJournal Article
Year of Publication2014
AuteursBostan M, Caldini-Queiros C
JournalQUARTERLY OF APPLIED MATHEMATICS
Volume72
PaginationPII S 0033-569X(2014)01357-4
Type of ArticleArticle
ISSN0033-569X
Résumé

This paper is devoted to the finite Larmor radius approximation of the Fokker-Planck-Landau equation, which plays a major role in plasma physics. We obtain a completely explicit form for the gyroaverage of the Fokker-Planck-Landau kernel, accounting for diffusion and convolution with respect to both velocity and (perpendicular) position coordinates. We show that the new collision operator enjoys the usual physical properties; the averaged kernel balances the mass, momentum, and kinetic energy and dissipates the entropy, globally in velocity and perpendicular position coordinates.

DOI10.1090/S0033-569X-2014-01357-4