FINITE ELEMENT EIGENVALUE ENCLOSURES FOR THE MAXWELL OPERATOR

Affiliation auteurs!!!! Error affiliation !!!!
TitreFINITE ELEMENT EIGENVALUE ENCLOSURES FOR THE MAXWELL OPERATOR
Type de publicationJournal Article
Year of Publication2014
AuteursBarrenechea G.R, Boulton L., Boussaid N.
JournalSIAM JOURNAL ON SCIENTIFIC COMPUTING
Volume36
PaginationA2887-A2906
Type of ArticleArticle
ISSN1064-8275
Mots-cléseigenvalue enclosures, Finite element method, Maxwell equation, spectral pollution
Résumé

We propose employing the extension of the Lehmann-Maehly-Goerisch method, developed by Zimmermann and Mertins, as a highly effective tool for the pollution-free finite element computation of the eigenfrequencies of the resonant cavity problem on a bounded region. This method gives complementary bounds for the eigenfrequencies which are adjacent to a given parameter t is an element of R. We present a concrete numerical scheme which provides certified enclosures in a suitable asymptotic regime. We illustrate the applicability of this scheme by means of some numerical experiments on benchmark data using Lagrange elements and unstructured meshes.

DOI10.1137/140957810