Multilinear Sparse Decomposition for Best Spectral Bands Selection

Affiliation auteurs!!!! Error affiliation !!!!
TitreMultilinear Sparse Decomposition for Best Spectral Bands Selection
Type de publicationConference Paper
Year of Publication2014
AuteursBouchech HJamel, Foufou S, Abidi M
EditorElmoataz A, Lezoray O, Nouboud F, Mammass D
Conference NameIMAGE AND SIGNAL PROCESSING, ICISP 2014
PublisherEuropean Assoc Image & Signal Proc; Int Assoc Pattern Recognit; Inst Univ Technologie; Univ Caen Basse Normandie; ENSICAEN; Ctr Natl Rech Sci; Conseil Reg Basse Normandie; Conseil Gen Manche; Communaut Urbaine Cherbourg
Conference LocationHEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
ISBN Number978-3-319-07998-1; 978-3-319-07997-4
Mots-clésHGPP, MBLBP, Multilinear, sparse, Spectral bands, Tensor
Résumé

Optimal spectral bands selection is a primordial step in multispectral images based systems for face recognition. In this context, we select the best spectral bands using a multilinear sparse decomposition based approach. Multispectral images of 35 subjects presenting 25 different lengths from 480nm to 720nm and three lighting conditions: fluorescent, Halogen and Sun light are groupped in a 3-mode face tensor T of size 35x25x2. T is then decomposed using 3-mode SVD where three mode matrices for subjects, spectral bands and illuminations are sparsely determined. The 25x25 spectral bands mode matrix defines a sparse vector for each spectral band. Spectral bands having the sparse vectors with the lowest variation with illumination are selected as the best spectral bands. Experiments on two state-of-the-art algorithms, MBLBP and HGPP, showed the effectiveness of our approach for best spectral bands selection.