Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy |
Type de publication | Journal Article |
Year of Publication | 2015 |
Auteurs | Atie EM, Xie Z, Eter AEl, Salut R, Nedeljkovic D, Tannous T, Baida FI, Grosjean T |
Journal | APPLIED PHYSICS LETTERS |
Volume | 106 |
Pagination | 151104 |
Date Published | APR 13 |
Type of Article | Article |
ISSN | 0003-6951 |
Résumé | Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of ``remote'' (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices. (c) 2015 AIP Publishing LLC. |
DOI | 10.1063/1.4918531 |