Operator biflatness of the L-1-algebras of compact quantum groups

Affiliation auteurs!!!! Error affiliation !!!!
TitreOperator biflatness of the L-1-algebras of compact quantum groups
Type de publicationJournal Article
Year of Publication2015
AuteursCaspers M, Lee HHee, Ricard E
JournalJOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
Volume700
Pagination235-244
Date PublishedMAR
Type of ArticleArticle
ISSN0075-4102
Résumé

We prove that the L-1-algebra of any non-Kac type compact quantum group is not operator biflat. Since operator amenability implies operator biflatness, this result shows that any co-amenable, non-Kac type compact quantum group gives a counterexample to the conjecture that L-1 (G) is operator amenable if and only if G is amenable and co-amenable for any locally compact quantum group G. The result also implies that the L-1-algebra of a locally compact quantum group is operator biprojective if and only if G is compact and of Kac type.

DOI10.1515/crelle-2013-0016