Synthesis and evaluation of zirconium-89 labelled and long-lived GLP-1 receptor agonists for PET imaging
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Synthesis and evaluation of zirconium-89 labelled and long-lived GLP-1 receptor agonists for PET imaging |
Type de publication | Journal Article |
Year of Publication | 2020 |
Auteurs | Jacobsen CBorch, Raave R, Pedersen MOstergaard, Adumeau P, Moreau M, Valverde IE, Bjornsdottir I, Kristensen JBoggild, Grove MFinderup, Raun K, McGuire J, Goncalves V, Heskamp S, Denat F, Gustafsson M |
Journal | NUCLEAR MEDICINE AND BIOLOGY |
Volume | 82-83 |
Pagination | 49-56 |
Date Published | MAR-APR |
Type of Article | Article |
ISSN | 0969-8051 |
Mots-clés | Bioconjugation, GLP-1, molecular imaging, PET, Radiolabelling, Zirconium-89 |
Résumé | Introduction: Lately, zirconium-89 has shown great promise as a radionuclide for PET applications of long circulating biomolecules. Here, the design and synthesis of protracted and long-lived GLP-1 receptor agonists conjugated to desferrioxamine and labelled with zirconium-89 is presented with the purpose of studying their in vivo distribution by PET imaging. The labelled conjugates were evaluated and compared to a non-labelled GLP-1 receptor agonist in both in vitro and in vivo assays to certify that the modification did not significantly alter the peptides' structure or function. Finally, the zirconium-89 labelled peptides were employed in PET imaging, providing visual verification of their in vivo biodistribution. Methods: The evaluation of the radiolabelled peptides and comparison to their non-labelled parent peptide was performed by in vitro assays measuring binding and agonistic potency to the GLP-1 receptor, physicochemical studies aiming at elucidating change in peptide structure upon bioconjugation and labelling as well as an in vivo food in-take study illustrating the compounds' pharmacodynamic properties. The biodistribution of the labelled GIP-1 analogues was determined by ex vivo biodistribution and in vivo PET imaging. Results: The results indicate that it is surprisingly feasible to design and synthesize a protracted, zirconium-89 labelled GLP-1 receptor agonist without losing in vitro potency or affinity as compared to a non-labelled parent peptide. Physicochemical properties as well as pharmacodynamic properties are also maintained. The biodistribution in rats shows high accumulation of radiolabelled peptide in well-perfused organs such as the liver, kidney, heart and lungs. The PET imaging study confirmed the findings from the biodistribution study with a significant high uptake in kidneys and presence of activity in liver, heart and larger blood vessels. Conclusions and advances in knowledge: This initial study indicates the potential to monitor the in vivo distribution of long-circulating incretin hormones using zirconium-89 based PET. (C) 2019 The Authors. Published by Elsevier Inc. |
DOI | 10.1016/j.nucmedbio.2019.11.006 |