A NEW COARSELY RIGID CLASS OF BANACH SPACES

Affiliation auteurs!!!! Error affiliation !!!!
TitreA NEW COARSELY RIGID CLASS OF BANACH SPACES
Type de publicationJournal Article
Year of Publication2021
AuteursBaudier F., Lancien G., Motakis P., Schlumprecht T.
JournalJOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU
Volume20
PaginationPII S1474748019000732
Date PublishedSEP
Type of ArticleArticle
ISSN1474-7480
Mots-clésasymptotic-c(0) spaces, Coarse embeddings, coarsely rigid classes of banach spaces, Hamming graphs
Résumé

We prove that the class of reflexive asymptotic-c(0) Banach spaces is coarsely rigid, meaning that if a Banach space X coarsely embeds into a reflexive asymptotic-c(0) space Y, then X is also reflexive and asymptotic-c(0). In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-c(0) space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.

DOI10.1017/S1474748019000732