Dynamic Force/Position Modeling of a one-DOF Smart Piezoelectric Micro-Finger with Sensorized End-Effector
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Dynamic Force/Position Modeling of a one-DOF Smart Piezoelectric Micro-Finger with Sensorized End-Effector |
Type de publication | Conference Paper |
Year of Publication | 2014 |
Auteurs | Komati B, Clevy C, Rakotondrabe M, Lutz P |
Conference Name | 2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM) |
Publisher | IEEE; ASME; ICS; DSC; IEEE Robot Automat Soc; Robot Soc Japan; JSPE; IEEJ; JSME; Femto St Sci & Technol; Labe Act; SICE; GDR MACS; Univ Franche Comte; Univ Technologie Belfort Montbeliard; ENSMM; SFMC; CNRS |
Conference Location | 345 E 47TH ST, NEW YORK, NY 10017 USA |
ISBN Number | 978-1-4799-5736-1 |
Résumé | In this paper, a generic microscale system is studied where a smart microsystem composed of an active based material actuator, sensorized structure and transformation system is studied. This problem is important at the microscale because it offers a force measurement of the applied force by the actuator to a flexible environment which enables to understand the interaction between the complete smart microsystem and the environment and to design and control the interaction between the system and the environment. A special case where a sensorized end-effector is fixed on the tip of a piezoelectric actuator is detailed. Integrating a sensorized end-effector influences the behavior of the smart microfinger and is not studied in recent works. The complete finger, which is called in this paper smart finger, consists of a piezoelectric actuator, an end-effector and a novel piezoresistive force sensor. A complete model is developed for generating both force and displacement at the finger's tip while interaction with a flexible environment. A nonlinear model of the piezoelectric actuator is considered and a complete model is developed taking into account the frequency dependent hysteresis of the piezoelectric actuator. The model of the hysteresis is based on the Bouc-Wen method which simplifies the parameter estimation. The complete dynamic force/position model of the finger is validated experimentally with small errors (less than 10%). |