A basis for the Kauffman skein module of the product of a surface and a circle
Affiliation auteurs | Affiliation ok |
Titre | A basis for the Kauffman skein module of the product of a surface and a circle |
Type de publication | Journal Article |
Year of Publication | 2021 |
Auteurs | Detcherry R, Wolff M |
Journal | ALGEBRAIC AND GEOMETRIC TOPOLOGY |
Volume | 21 |
Pagination | 2959-2993 |
Type of Article | Article |
ISSN | 1472-2739 |
Résumé | The Kauffman bracket skein module S(M) of a 3-manifold M is a Q(A)-vector space spanned by links in M modulo the so-called Kauffman relations. For any closed oriented surface Sigma we provide an explicit spanning family for the skein modules S(Sigma x S-1). Combined with earlier work of Gilmer and Masbaum (Proc. Amer. Math. Soc. 147 (2019) 4091-4106), we answer their question about the dimension of S(Sigma x S-1) being 2(2g+1) + 2g-1. |
DOI | 10.2140/agt.2021.21.2959 |