Kinship verification through facial images using multiscale and multilevel handcrafted features

Affiliation auteurs!!!! Error affiliation !!!!
TitreKinship verification through facial images using multiscale and multilevel handcrafted features
Type de publicationJournal Article
Year of Publication2020
AuteursChergui A, Ouchtati S, Mavromatis S, Bekhouche SEddine, Sequeira J, Dornaika F
JournalJOURNAL OF ELECTRONIC IMAGING
Volume29
Pagination023017
Date PublishedMAR
Type of ArticleArticle
ISSN1017-9909
Mots-clésfeature representation, Feature selection, Kinship verification, pyramid multilevel, Support vector machines
Résumé

We address kinship verification, which is a challenging problem in computer vision and pattern discovery. It has several applications, such as organizing photoalbums, recognizing resemblances among humans, and finding missing children. We present a system for facial kinship verification based on several kinds of texture descriptors (local binary patterns, local ternary patterns, local directional patterns, local phase quantization, and binarized statistical image features) with pyramid multilevel (PML) face representation for feature extraction along with our proposed paired feature representation and our proposed robust feature selection to reduce the number of features. The proposed approach consists of the following three main stages: (1) face preprocessing, (2) feature extraction and selection, and (3) kinship verification. Extensive experiments are conducted on five publicly available databases (Cornell, UB KinFace, Family 101, KinFace W-I, and KinFace W-II). Additionally, we provided a wide experiment for each stage to find the best and most suitable settings. We present many comparisons with state-of-the-art methods and through these comparisons, it appears that our experiments show stable and good results. (C) 2020 SPIE and IS&T

DOI10.1117/1.JEI.29.2.023017