Complete hyperfine Paschen-Back regime at relatively small magnetic fields realized in potassium nano-cell

Affiliation auteurs!!!! Error affiliation !!!!
TitreComplete hyperfine Paschen-Back regime at relatively small magnetic fields realized in potassium nano-cell
Type de publicationJournal Article
Year of Publication2015
AuteursSargsyan A., Tonoyan A., Hakhumyan G., Leroy C., Pashayan-Leroy Y., Sarkisyan D.
JournalEPL
Volume110
Pagination23001
Date PublishedAPR
Type of ArticleArticle
ISSN0295-5075
Résumé

A one-dimensional nano-metric-thin cell (NC) filled with potassium metal has been built and used to study optical atomic transitions in external magnetic fields. These studies benefit from the remarkable features of the NC allowing one to use lambda/2 and lambda methods for effective investigations of individual transitions of the K D-1 line. The methods are based on strong narrowing of the absorption spectrum of the atomic column of thickness L equal to lambda/2 and to lambda (with lambda = 770nm being the resonant laser radiation wavelength). In particular, for a pi-polarized radiation excitation the lambda-method allows us to resolve eight atomic transitions (in two groups of four atomic transitions) and to reveal two remarkable transitions that we call guiding transitions (GT). The probabilities of all other transitions inside the group (as well as the frequency slope vs. magnetic field) tend to the probability and to the slope of GT. Note that for circular polarization there is one group of four transitions and GT do not exist. Among eight transitions there are also two transitions (forbidden for B = 0) with the probabilities undergoing strong modification under the influence of magnetic fields. Practically the complete hyperfine Paschen-Back regime is observed at relatively low (similar to 1 kG) magnetic fields. Note that for the K D-2 line GT are absent. Theoretical models describe the experiment very well. Copyright (C) EPLA, 2015

DOI10.1209/0295-5075/110/23001