Link Between Increased Satiety Gut Hormones and Reduced Food Reward After Gastric Bypass Surgery for Obesity
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Link Between Increased Satiety Gut Hormones and Reduced Food Reward After Gastric Bypass Surgery for Obesity |
Type de publication | Journal Article |
Year of Publication | 2016 |
Auteurs | Goldstone AP, Miras AD, Scholtz S, Jackson S, Neff KJ, Penicaud L, Geoghegan J, Chhina N, Durighel G, Bell JD, Meillon S, le Roux CW |
Journal | JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM |
Volume | 101 |
Pagination | 599-609 |
Date Published | FEB |
Type of Article | Article |
ISSN | 0021-972X |
Résumé | Context: Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. Objective: To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. Design: These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. Patients: Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. Intervention: Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. Main Outcome Measures: Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. Results: Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. Conclusions: Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food. |
DOI | 10.1210/jc.2015-2665 |