Characterization of metric spaces whose free space is isometric to l(1)*
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Characterization of metric spaces whose free space is isometric to l(1)* |
Type de publication | Journal Article |
Year of Publication | 2016 |
Auteurs | Dalet A, Kaufmann PL, Prochazka A |
Journal | BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN |
Volume | 23 |
Pagination | 391-400 |
Date Published | JUL-SEP |
Type of Article | Article |
ISSN | 1370-1444 |
Mots-clés | branching point, Extreme point, Lipschitz free space, norm-attaining Lipschitz functional, real-tree |
Résumé | We characterize metric spaces whose Lipschitz free space is isometric to l(1). In particular, we show that the Lipschitz free space over an ultrametric space is not isometric to l(1)(Gamma) for any set r. We give a lower bound for the Banach-Mazur distance in the finite case. |
DOI | 10.36045/bbms/1473186513 |