Fundamental classes in motivic homotopy theory
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Fundamental classes in motivic homotopy theory |
Type de publication | Journal Article |
Year of Publication | 2021 |
Auteurs | Deglise F, Jin F, Khan AA |
Journal | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY |
Volume | 23 |
Pagination | 3935-3993 |
Type of Article | Article |
ISSN | 1435-9855 |
Mots-clés | Euler class, Fundamental class, Gysin morphism, motivic Gauss-Bonnet formula, motivic homotopy |
Résumé | We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated twisted bivariant theory, extending the formalism of Fulton and MacPherson. We import the tools of Fulton's intersection theory into this setting: (refined) Gysin maps, specialization maps, and formulas for excess of intersection, self-intersections, and blow-ups. We also develop a theory of Euler classes of vector bundles in this setting. For the Milnor-Witt spectrum recently constructed by Deglise-Fasel, we get a bivariant theory extending the Chow-Witt groups of Barge-Morel, in the same way the higher Chow groups extend the classical Chow groups. As another application we prove a motivic Gauss-Bonnet formula, computing Euler characteristics in the motivic homotopy category. |
DOI | 10.4171/JEMS/1094 |