Oscillatory integrals and fractal dimension

Affiliation auteurs!!!! Error affiliation !!!!
TitreOscillatory integrals and fractal dimension
Type de publicationJournal Article
Year of Publication2021
AuteursRolin J-P, Vlah D, Zupanovic V
JournalBULLETIN DES SCIENCES MATHEMATIQUES
Volume168
Pagination102972
Date PublishedMAY
Type of ArticleArticle
ISSN0007-4497
Mots-clésBox dimension, Critical points, Minkowski content, Newton diagram, Oscillatory integral
Résumé

We study geometrical representation of oscillatory integrals with an analytic phase function and a smooth amplitude with compact support. Geometrical properties of the curves defined by the oscillatory integral depend on the type of a critical point of the phase. We give explicit formulas for the box dimension and the Minkowski content of these curves. Methods include Newton diagrams and the resolution of singularities. (C) 2021 Elsevier Masson SAS. All rights reserved.

DOI10.1016/j.bulsci.2021.102972