Oscillatory integrals and fractal dimension
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Oscillatory integrals and fractal dimension |
Type de publication | Journal Article |
Year of Publication | 2021 |
Auteurs | Rolin J-P, Vlah D, Zupanovic V |
Journal | BULLETIN DES SCIENCES MATHEMATIQUES |
Volume | 168 |
Pagination | 102972 |
Date Published | MAY |
Type of Article | Article |
ISSN | 0007-4497 |
Mots-clés | Box dimension, Critical points, Minkowski content, Newton diagram, Oscillatory integral |
Résumé | We study geometrical representation of oscillatory integrals with an analytic phase function and a smooth amplitude with compact support. Geometrical properties of the curves defined by the oscillatory integral depend on the type of a critical point of the phase. We give explicit formulas for the box dimension and the Minkowski content of these curves. Methods include Newton diagrams and the resolution of singularities. (C) 2021 Elsevier Masson SAS. All rights reserved. |
DOI | 10.1016/j.bulsci.2021.102972 |