Integrability of the generalised Hill problem
Affiliation auteurs | Affiliation ok |
Titre | Integrability of the generalised Hill problem |
Type de publication | Journal Article |
Year of Publication | 2022 |
Auteurs | Combot T, Maciejewski AJ, Przybylska M |
Journal | NONLINEAR DYNAMICS |
Volume | 107 |
Pagination | 1989-2002 |
Date Published | FEB |
Type of Article | Article |
ISSN | 0924-090X |
Mots-clés | Integrability obstructions, Regularisation, Super-integrability, The Hill problem |
Résumé | We consider a certain two-parameter generalisation of the planar Hill lunar problem. We prove that for nonzero values of these parameters the system is not integrable in the Liouville sense. For special choices of parameters the system coincides with the classical Hill system, the integrable synodical Kepler problem or the integrable parametric Henon system. We prove that the synodical Kepler problem is not super-integrable, and that the parametric Henon problem is super-integrable for infinitely many values of the parameter. |
DOI | 10.1007/s11071-021-07040-8 |