Spectra for Semiclassical Operators with Periodic Bicharacteristics in Dimension Two

Affiliation auteurs!!!! Error affiliation !!!!
TitreSpectra for Semiclassical Operators with Periodic Bicharacteristics in Dimension Two
Type de publicationJournal Article
Year of Publication2015
AuteursHall MA, Hitrik M, Sjoestrand J
JournalINTERNATIONAL MATHEMATICS RESEARCH NOTICES
Volume2015
Pagination10243-10277
Type of ArticleArticle
ISSN1073-7928
Résumé

We study the distribution of eigenvalues for selfadjoint h-pseudodifferential operators in dimension two, arising as perturbations of selfadjoint operators with a periodic classical flow. When the strength epsilon of the perturbation is << h, the spectrum displays a cluster structure, and assuming that epsilon >> h(2) (or sometimes >> h(N0), for N-0 > 1 large), we obtain a complete asymptotic description of the individual eigenvalues inside subclusters, corresponding to the regular values of the leading symbol of the perturbation, averaged along the flow.

DOI10.1093/imrn/rnu270