TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development

Affiliation auteurs!!!! Error affiliation !!!!
TitreTAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development
Type de publicationJournal Article
Year of Publication2021
Auteursvan Woerden GM, Bos M, de Konink C, Distel B, Trezza RAvagliano, Shur NE, Baranano K, Mahida S, Chassevent A, Schreiber A, Erwin AL, Gripp KW, Rehman F, Brulleman S, McCormack R, de Geus G, Kalsner L, Sorlin A, Bruel A-L, Koolen DA, Gabriel MK, Rossi M, FitzPatrick DR, Wilkie AOM, Calpena E, Johnson D, Brooks A, van Slegtenhorst M, Fleischer J, Groepper D, Lindstrom K, A. Innes M, Goodwin A, Humberson J, Noyes A, Langley KG, Telegrafi A, Blevins A, Hoffman J, Sacoto MJGuillen, Juusola J, Monaghan KG, Punj S, Simon M, Pfundt R, Elgersma Y, Kleefstra T
JournalHUMAN MUTATION
Volume42
Pagination445-459
Date PublishedAPR
Type of ArticleArticle
ISSN1059-7794
Mots-cléscortical development, functional genomics, in utero electroporation, Neurodevelopmental disorders, TAOK1
Résumé

Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.

DOI10.1002/humu.24176