A Novel Neuroprotective Role of Phosphatase of Regenerating Liver-1 against CO2 Stimulation in Drosophila

Affiliation auteurs!!!! Error affiliation !!!!
TitreA Novel Neuroprotective Role of Phosphatase of Regenerating Liver-1 against CO2 Stimulation in Drosophila
Type de publicationJournal Article
Year of Publication2019
AuteursGuo P, Xu X, Wang F, Yuan X, Tua Y, Zhang B, Zheng H, Yu D, Ge W, Gong Z, Yang X, Xi Y
JournalISCIENCE
Volume19
Pagination291+
Date PublishedSEP 27
Type of ArticleArticle
Résumé

Neuroprotection is essential for the maintenance of normal physiological functions in the nervous system. This is especially true under stress conditions. Here, we demonstrate a novel protective function of PRL-1 against CO2 stimulation in Drosophila. In the absence of PRL-1, flies exhibit a permanent held-up wing phenotype upon CO2 exposure. Knockdown of the CO2 olfactory receptor, Gr21a, suppresses the phenotype. Our genetic data indicate that the wing phenotype is due to a neural dysfunction. PRL-1 physically interacts with Uex and controls Uex expression levels. Knockdown of Uex alone leads to a similar wing held-up phenotype to that of PRL-1 mutants. Uex acts downstream of PRL-1. Elevated Uex levels in PRL-1 mutants prevent the CO2-induced phenotype. PRL-1 and Uex are required for a wide range of neurons to maintain neuroprotective functions. Expression of human homologs of PRL-1 could rescue the phenotype in Drosophila, suggesting a similar function in humans.

DOI10.1016/j.isci.2019.07.026