Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes |
Type de publication | Journal Article |
Year of Publication | 2015 |
Auteurs | Zhou W., Hamroun B., Le Gorrec Y., Couenne F. |
Journal | IFAC PAPERSONLINE |
Volume | 48 |
Pagination | 476-481 |
Type of Article | Proceedings Paper |
ISSN | 2405-8963 |
Mots-clés | distributed systems, Irreversible Thermodynamics, Port Hamiltonian systems |
Résumé | In this paper is proposed a thermodynamically consistent port Hamiltonian formulation of non isothermal reaction diffusion processes. The use of appropriate thermodynamic variables for the definition of the state and the co-state vectors allows to highlight, the inherent infinite dimensional interconnection structure linking the different thermodynamic phenomena (entropy production, diffusion, conduction) that is suitable for control purposes. The presentation is given for systems defined on one dimensional spatial domain. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. |
DOI | 10.1016/j.ifacol.2015.05.119 |