Finite index subgroups of mapping class groups

Affiliation auteurs!!!! Error affiliation !!!!
TitreFinite index subgroups of mapping class groups
Type de publicationJournal Article
Year of Publication2014
AuteursBerrick A.J, Gebhardt V., Paris L.
JournalPROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY
Volume108
Pagination575-599
Date PublishedMAR
Type of ArticleArticle
ISSN0024-6115
Résumé

Let g >= 3 and n >= 0, and let M-g,M- n be the mapping class group of a surface of genus g with n boundary components. We prove that M-g,M- n contains a unique subgroup of index 2(g-1)(2(g)-1) up to conjugation, a unique subgroup of index 2(g-1)(2(g)+1) up to conjugation, and the other proper subgroups of M-g,M- n are of index greater than 2(g-1)(2(g)+1). In particular, the minimum index for a proper subgroup of M-g,M- n is 2(g-1)(2(g)-1).

DOI10.1112/plms/pdt022