Finite index subgroups of mapping class groups
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Finite index subgroups of mapping class groups |
Type de publication | Journal Article |
Year of Publication | 2014 |
Auteurs | Berrick A.J, Gebhardt V., Paris L. |
Journal | PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY |
Volume | 108 |
Pagination | 575-599 |
Date Published | MAR |
Type of Article | Article |
ISSN | 0024-6115 |
Résumé | Let g >= 3 and n >= 0, and let M-g,M- n be the mapping class group of a surface of genus g with n boundary components. We prove that M-g,M- n contains a unique subgroup of index 2(g-1)(2(g)-1) up to conjugation, a unique subgroup of index 2(g-1)(2(g)+1) up to conjugation, and the other proper subgroups of M-g,M- n are of index greater than 2(g-1)(2(g)+1). In particular, the minimum index for a proper subgroup of M-g,M- n is 2(g-1)(2(g)-1). |
DOI | 10.1112/plms/pdt022 |