Computation of Yvon-Villarceau circles on Dupin cyclides and construction of circular edge right triangles on tori and Dupin cyclides
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Computation of Yvon-Villarceau circles on Dupin cyclides and construction of circular edge right triangles on tori and Dupin cyclides |
Type de publication | Journal Article |
Year of Publication | 2014 |
Auteurs | Garnier L, Barki H, Foufou S, Puech L |
Journal | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
Volume | 68 |
Pagination | 1689-1709 |
Date Published | DEC |
Type of Article | Article |
ISSN | 0898-1221 |
Mots-clés | Circular edge right triangle, Inversion, Ring Dupin cyclide, Ring torus, Yvon-Villarceau circle |
Résumé | Ring Dupin cyclides are non-spherical algebraic surfaces of degree four that can be defined as the image by inversion of a ring torus. They are interesting in geometric modeling because: (1) they have several families of circles embedded on them: parallel, meridian, and Yvon-Villarceau circles, and (2) they are characterized by one parametric equation and two equivalent implicit ones, allowing for better flexibility and easiness of use by adopting one representation or the other, according to the best suitability for a particular application. These facts motivate the construction of circular edge triangles lying on Dupin cyclides and exhibiting the aforementioned properties. Our first contribution consists in an analytic method for the computation of Yvon-Villarceau circles on a given ring Dupin cyclide, by computing an adequate Dupin cyclide-torus inversion and applying it to the torusbased equations of Yvon-Villarceau circles. Our second contribution is an algorithm which, starting from three arbitrary 3D points, constructs a triangle on a ring torus such that each of its edges belongs to one of the three families of circles on a ring torus: meridian, parallel, and Yvon-Villarceau circles. Since the same task of constructing right triangles is far from being easy to accomplish when directly dealing with cyclides, our third contribution is an indirect algorithm which proceeds in two steps and relies on the previous one. As the image of a circle by a carefully chosen inversion is a circle, and by constructing different images of a right triangle on a ring torus, the indirect algorithm constructs a one-parameter family of 3D circular edge triangles lying on Dupin cyclides. (C) 2014 Elsevier Ltd. All rights reserved. |
DOI | 10.1016/j.camwa.2014.10.020 |