Infinite dimensional model of a double flexible-link manipulator: The Port-Hamiltonian approach
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Infinite dimensional model of a double flexible-link manipulator: The Port-Hamiltonian approach |
Type de publication | Journal Article |
Year of Publication | 2020 |
Auteurs | Mattioni A, Wu Y, Le Gorrec Y |
Journal | APPLIED MATHEMATICAL MODELLING |
Volume | 83 |
Pagination | 59-75 |
Date Published | JUL |
Type of Article | Article |
ISSN | 0307-904X |
Mots-clés | Boundary control systems, Discretization, Distributed parameter systems, Finite dimensional approximation, Flexible arms, Flexible robotics, port-Hamiltonian systems |
Résumé | This paper proposes a modular and control oriented model of a double flexible-link manipulator that stems from the modelling of a spatial flexible robot. The model consists of the power preserving interconnection between two infinite dimensional systems describing the beam's motion and deformation with a finite dimensional nonlinear system describing the dynamics of the actuated rotating joints. To derive the model, Timoshenko's assumptions are made for the flexible beams. Using Hamilton's principle, the dynamic equations of the system are derived and then written in the Port-Hamiltonian (PH) framework through a proper choice of the state variables. These so called energy variables allow to write the total energy as a quadratic form with respect to a state dependent energy matrix. The resulting model is shown to be a passive system, a convenient property for control design purposes. (C) 2020 Elsevier Inc. All rights reserved. |
DOI | 10.1016/j.apm.2020.02.008 |