Fault-Tolerant Consideration and Active stabilization for Floating Interleaved Boost Converter System

Affiliation auteurs!!!! Error affiliation !!!!
TitreFault-Tolerant Consideration and Active stabilization for Floating Interleaved Boost Converter System
Type de publicationConference Paper
Year of Publication2017
AuteursPang S, Nahid-Mobarakeh B, Pierfederici S, Huangfu Y, Luo G, Gao F
Conference NameIECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY
PublisherIEEE Ind Eect Soc; Inst Elect & Elect Engineers; Chinese Assoc Automat; Syst Engn Soc China; Chinese Power Supply Soc; Natl Nat Sci Fdn China; Chinese Acad Sci; Chinese Electrotechn Soc; Beihang Univ Sch, Reliabil & Syst Engn; RMIT Univ; Beijing JiaoTong
Conference Location345 E 47TH ST, NEW YORK, NY 10017 USA
ISBN Number978-1-5386-1127-2
Mots-clésactive stabilizer, fault-tolerant, Floating Interleaved Boost Converter, LC filter, Stability
Résumé

It is well know that the interaction between poorly damped LC input filter with dc-dc converter lead to degradation of dynamic performance and fault scenario of the system. This problem also often occurs in fuel cell systems. Due to the relatively low and unregulated output voltage, the high gain boost converter is need in such application. A floating interleaved boost converter (FIBC) is selected as a good candidate to achieve this desired effect. In order to ensure the system stability, this paper addresses a method which permits to design a fault-tolerant stabilizing system for the proposed converter and the filter. It consists in implementing an active stabilizer for each switch. Afterward, a method to design fault-tolerant stabilizing system is developed. The simulation results are reported to verify the effectiveness of the proposed method.